
NOTES ON TENSOR PRODUCTS

The purpose of these notes is to provide a few basic ideas concerning tensor products for my Math 790
class. Throughout, all vector spaces will be vector spaces over the field F . One motivating idea for the
tensor product is the following. Suppose V is a vector space over F and K is a field containing F . Is there a
natural way to extend the scalars of V from F to K, i.e., is there a way to make V into a vector space over
K? If we regard K as a vector space over F , then one way to extend scalars is to take the tensor product
of K with V . Of course, there are more direct ways of doing this in the context of vector spaces over a
field, but the tensor product appears throughout mathematics and can be quite subtle when the objects in
question are not vector spaces. For example, the tensor product of non-zero objects over Z can be zero!

If V andW are vector spaces the tensor product will be a vector space over F generated by vectors that can
be written as v ⊗ w, with v ∈ V and w ∈ W , where such expressions satisfy the following bilinear relations:

(λv1 + v2)⊗ w = λ(v1 ⊗ w) + v2 ⊗ w and v ⊗ (λw1 + w2) = λ(v ⊗ w1) + v ⊗ w2,

for all vi ∈ V , wi ∈ W and λ ∈ F . The basic idea of the construction is to start with a large vector space
with basis elements consisting of the pairs (v, w) ∈ V ×W and then impose the required bilinear relations
by modding out the subspace generated by the corresponding bilinear expressions.

We begin with the formal definition of the tensor product. This definition is expressed in terms of
a universal property the tensor product enjoys in relation to certain commutative diagrams. While this
definition is very abstract, it is the principal tool for developing properties of the tensor product. In fact,
the construction of the tensor product plays a somewhat minor role in this regard.

Definitions. Suppose V and W are vector spaces over the field F .

1. A bilinear map on V ×W is a function f : V ×W → P , where P is a vector space over F , satisfying:

(i) f(v1 + v2, w) = f(v1, w) + f(v2, w), for all vi ∈ V and w ∈ W .
(ii) f(v, w1 + w2) = f(v, w1) + f(v, w2), for all v ∈ V and wi ∈ W .
(iii) f(λv,w) = λf(v, w) = f(v, λw), for all v ∈ V,w ∈ W,λ ∈ F .

In other word, for any fixed v0 ∈ V , f(v0, w) is a linear operator on W , and for any fixed w0 ∈ W , f(v, w0)
is a linear operator on V .

2. A tensor product of V and W consists of a pair (P, f), where P is a vector space over F and f : V ×W → P
is a bilinear map such that given a vector space U and bilinear map g : V ×W → U , there exists a unique
linear transformation T : P → U such that T ◦ f = g. Diagrammatically, we may represent this condition as
follows:

V ×W
f // P

U
��

g

{{

T

where the filled in arrows f and g are indicating maps that are given and the dotted arrow T indicates the
map that results from invoking the definition. The condition T ◦ f = g is often expressed by saying that the
diagram above is a commutative diagram.

Let us assume temporarily that tensor products exist. We will show how to derive some basic properties
of the tensor product using the definition above. We begin with the uniqueness of the tensor product. It is
not difficult to show that if (P, f) is a tensor product of V and W and α : P → P1 is an isomorphism of
vector spaces, then for f1 := α ◦ f , (P1, f1) is also a tensor product of V and W . Our first proposition shows
that this is the only way of creating another tensor product of V and W . In other words, tensor products
are unique up to isomorphism. Thus, we will refer to the resulting vector space as the tensor product of V
and W .
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Proposition 1. Let (P, f) and (P1, f1) be tensor products of the vectors spaces V and W . Then there exists
an isomorphism T : P → P1 such that f1 = T ◦ f .

Proof. Using the definition of tensor product twice, we have the following commutative diagrams

V ×W
f // P

P1

��
f1

{{

T

and

V ×W
f1 // P1

P
��

f

{{

S

with induced linear transformations T : P → P1 and S : P1 → P satisfying f1 = T ◦ f and f = S ◦ f1. Thus,
f = S ◦ (T ◦ f) = (ST ) ◦ f, which means we have a commutative diagram

V ×W
f // P

P
��

f

{{

ST

.

But this diagram also commutes if we replace ST by the identity map Id on P . Since by definition, there is
a unique diagonal map making this diagram commute, we must have ST = Id. In exactly the same way, we
see that TS is the identity on P1. This means that T is an isomorphism, and since f1 = T ◦ f , the proof is
complete. □

Thus, once we show that tensor products exist, they are unique up to isomorphism. For each V and W ,
let us choose a representative of the isomorphism class of tensor products and denote it by V ⊗W .

We derive one more property of the tensor product before establishing the existence of tensor products.

Proposition 2. Given vector spaces V and W over F , V ⊗W ∼= W ⊗ V .

Proof. The proof is similar the the proof of the previous proposition. Let f : V × W → V ⊗ W and
h : W × V → W ⊗ V be the given bilinear maps. Define g : V ×W → W ⊗ V by g(v, w) := h(w, v). If we
show that g is bilinear, then we have a commutative diagram

V ×W
f // V ⊗W

W ⊗ V
��

g

yy

T

with a linear transformation T : V ⊗W → W ⊗ V such that f ◦ T = g. To see that g is bilinear, note that
for λ ∈ F , v1, v2 ∈ V and w ∈ W ,

g(λv1 + v2, w) = h(w, λv1 + v2) = λh(w, v1) + h(w, v2) = λg(v1, w) + g(v2, w).

The proof that g is linear in its second variable is similar. Now, by symmetry, we also have a bilinear map
k : W × V → V ⊗W and commutative diagram

W × V
h // W ⊗ V

V ⊗W
��

k

yy

S
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with a linear transformation S : W ⊗ V → V ⊗W such that S ◦ h = k. Here, k(w, v) = f(v, w). Now, let
(v, w) ∈ V ×W . Then,

ST ◦ f(v, w) = Sg(v, w) = Sh(w, v) = k(w, v) = f(v, w),

and hence the diagram

V ×W
f // V ⊗W

V ⊗W
��

f

yy

ST

is commutative, i.e., f = ST ◦f . But the diagram is also commutative if we replace the linear transformation
ST by the identity map Id on V ⊗W . By the uniqueness of the induced maps, ST is the identity on V ⊗W .
Similarly, TS is the identity on W ⊗ V . This shows V ⊗W ∼= W ⊗ V , as required. □

We could continue to derive properties of the tensor product just from the definition without knowing the
construction of the tensor product, but a crucial property of the given map bilinear f : V ×W → V ⊗W
remains hidden; namely, that the set of vectors f(v, w), as (v, w) varies over V × W , generates the vector
space V ⊗W . As we will see below, this property follows from the fact that the tensor product is a quotient
of vector spaces, but first, a quick discussion concerning quotient spaces.

Discussion. Let A denote a vector space over F and take B ⊆ A any (fixed) subspace. For a ∈ A, we
may form the set a + B := {a + b | b ∈ B}. This set is NOT a subspace unless a ∈ B, in which case,
a+B = B = 0 +B, as sets. One way to think of the set a+B is as a translation of B by a. For example,
if A = R2 and B is any line through the origin, then for a ∈ R2, a + B is the line through a parallel to B,
i.e., the line B translated to the point a. We call the sets a + B cosets of A with respect to B and write
A/B for the set of all cosets. An important property of cosets is the following: a1 +B = a2 +B if and only
if a1 − a2 ∈ B. We leave it to you to check this property.

We can turn A/B into a vector space over F as follows. First note that for a1 + B, a2 + B ∈ A/B,
(a1 +B) + (a2 +B) = (a1 + a2) +B as sets (since B +B = B). Thus, the sum of elements in A/B is again
an element of A/B, so we may define addition of cosets by the formula (a1+B)+ (a2+B) := (a1+a2)+B.
We define a scalar multiple of a coset in a similar way, namely, λ · (a+B) := λa+B, for all λ ∈ F and cosets
a+B. Note that when λ ̸= 0, the sets λ · (a+B) and λa+B are actually equal. Moreover, if a+B = a′+B,
then a− a′ ∈ B, thus, λa− λa′ ∈ B, so λa+B = λa′ +B, and hence the definition of scalar multiplication
does not depend upon the coset representative. It is straightforward to check that with these operations,
A/B becomes a vector space over F .

The quotient space A/B is similar in spirit to various quotient structures in other contexts, e.g., the
integers modulo n, i.e., Z/nZ. Z/nZ may be regarded as the set of all cosets of the form a + nZ, for
elements a ∈ Z. In Z/nZ we may perform all of the usual operations involving addition and multiplication,
in accordance with all of the usual laws of arithmetic, but whenever we encounter n or a multiple of n, we
set such an expression equal to zero. Similarly, in A/B, if we write a for the coset a + B, then we may
perform all of the usual vector space operations on the vectors a ∈ A/B, but we agree to write 0, whenever
we encounter an element of B. In other words, the elements of B become zero in the quotient space A/B,
yet A/B retains a significant portion of the structure of A.

One final comment about quotient spaces in general. Suppose we are given the vector spaces A/B and
C and we wish to define a linear transformation from A/B to C. We note that to do this, it suffices to

find a linear transformation T̂ : A → C with the property that B is contained in the kernel of T̂ . Suppose
this is the case. Then, we define T : A/B → C by T (a + B) := T̂ (a). The point is to check that T is well
defined, since apriori, the definition appears to depend upon the representative of each coset. So, suppose
a + B = a′ + B. Then a − a′ ∈ B, and hence 0 = T̂ (a − a′) = T̂ (a) − T̂ (a′). Thus, T̂ (a) = T̂ (a′), and
therefore T (a+B) = T (a′ +B), thereby showing that T is well defined. Given this, T is easily seen to be a

linear transformation, since T̂ is a linear transformation.

We now proceed to the existence of the tensor product.

Construction. Let V and W be vector spaces over F . We consider V × W as a set, and as such, we
write H for the vector space having the elements of V × W as a basis. In other words, H consists of
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all formal finite linear combinations of elements (v, w) ∈ V × W . Note that for v1, v2 ∈ V and w ∈ W ,
(v1 + v2, w), (v1, w), (v2, w) are three distinct elements of V ×W and hence, three distinct basis elements in
H. Thus, the non-trivial linear combination (v1 + v2, w)− (v1, w)− (v2, w) is not zero in H. The point is to
make such an expression zero by creating a subspace containing it and then factoring out that subspace. To
that end, we let K denote the subspace of H generated by all expressions of the form:

(i) (v1 + v2, w)− (v1, w)− (v2, w)
(ii) (v, w1 + w2)− (v, w1)− (v, w2)
(iii) (λv,w)− λ(v, w)
(iv) (v, λw)− λ(v, w)

for all v, vi ∈ V , w,wi ∈ W , and λ ∈ F . By definition, the K cosets determined by the expressions
(i)-(iv) become zero in the quotient space H/K. This in turn imposes the required bilinear relations on
the elements of H/K. For example, in H/K, ((v1 + v2, w) − (v1, w) − (v2, w)) + K = 0 + K, and thus
(v1 + v2, w) +K = ((v1, w) +K) + ((v2, w) +K).

(**) Let us now agree to write v ⊗ w for the coset (v, w) +K, for all basis elements (v, w) ∈ H.

Since a typical element in H is a linear combination of the form λ1(v1, w1) + · · ·+ λn(vn, wn), for λi ∈ F , a
typical element in H/K is of the form

(λ1(v1, w1) + + · · ·+ λn(vn, wn)) +K = (λ1(v1, w1) +K) + · · ·+ (λn(vn, wn) +K),

which we henceforth write as λ1(v1 ⊗ w1) + · · ·+ λn(vn ⊗ wn). It now follows that in H/K, the expressions
(i)-(iv) above become:

(i) (v1 + v2)⊗ w = (v1 ⊗ w) + (v2 ⊗ w)
(ii) v ⊗ (w1 + w2) = (v ⊗ w1) + (v ⊗ w2)
(iii) (λv)⊗ w = λ(v ⊗ w)
(iv) v ⊗ (λw) = λ(v ⊗ w)

for all v, vi ∈ V , w,wi ∈ W , and λ ∈ F . It follows immediately that if we define f : V ×W → H/K by

f((v, w)) := (v, w) +K = v ⊗ w,

then f is a bilinear function. Thus, (H/K, f) will be a tensor product of V and W once we verify the required
universal property. So, suppose U is a vector space over F and g : V ×W → U is a bilinear function. As
mentioned in the last paragraph of the discussion above, in order to define a linear transformation T from
H/K to U , it suffices to define a linear transformation T̂ from H to U such that K is contained in the kernel

of T̂ . Since such a T̂ is determined by its effect on a basis, we define T̂ : H → U by T (v, w) := g(v, w), for
all basis elements (v, w) ∈ H. Consider a typical generator of K, say (v1 + v2, w)− (v1, w)− (v2, w). Then

T̂ ((v1 + v2, w)− (v1, w)− (v2, w)) = T̂ ((v1 + v2, w))− T̂ ((v1, w))− T̂ ((v2, w)

= g(v1 + v2, w)− g(v1, w)− g(v2, w)

= g(v1, w) + g(v2, w)− g(v1, w)− g(v2, w)

= 0.

A similar argument shows that all of the generators of K belong to the kernel of T̂ . Thus, there is an induced
linear transformation T : H/K that satisfies, T (h+K) = T̂ (h), for all h ∈ H. In particular, if (v, w) ∈ H is
a basis element, then

T ◦ f(v, w) = T ((v, w) +K) = T̂ (v, w) = g(v, w).

Thus, T ◦ f = g. In other words, the diagram

V ×W
f // H/K

U
��

g

zz

T

commutes. Note also that T (v ⊗ w) = g(v, w), for all v ⊗ w. Moreover, if T ′ : H/K → U is a linear
transformation satisfying T ′ ◦ f = g, then T ′(v ⊗ w) = T (v ⊗ w), for all v ⊗ w ∈ H/K, and thus T ′ = T ,
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since the vectors v ⊗ w span H/K. It follows that T is unique, and therefore, (H/K, f) is a tensor product
of V and W and we use this representative of the isomorphism class of tensor products of V and W as the
tensor product of V and W , which we denote by V ⊗W .

A final comment on the construction. As mentioned above, every element in V ⊗W is a linear combination
of expressions of the form v ⊗ w - in fact every element in the tensor product is a sum of elements of
the form v × w. However, the set of expressions of the form v ⊗ w is not a basis for V ⊗ W , since in
V ⊗W , (v1 + v2) ⊗ w − v1 ⊗ w − v2 ⊗ w = 0 is now a non-trivial dependence relation among the elements
(v1 + v2)⊗ w, v1 ⊗ w, v2 ⊗ w.

The following proposition presents a few more of the standard properties of the tensor product.

Proposition 3. Let V,W,U be vector spaces over F . Then:

(i) 0⊗ w = v ⊗ 0 = 0 in V ⊗W , for all v ∈ V and w ∈ W .
(ii) If {vc}c∈C is a basis for V and {wd}d∈D is a basis of W then {vc⊗wd}c∈C,d∈D is a basis for V ⊗W .
(iii) V ⊗ (U ⊕W ) ∼= (V ⊗ U)⊕ (V ⊗W ).
(iv) V ⊗ (U ⊗W ) ∼= (V ⊗ U)⊗W .

Proof. For part (i), note that 0 ⊗ w = (0 + 0) ⊗ w = (0 ⊗ w) + (0 ⊗ w), and thus, 0 = 0 ⊗ w, as required.
The other identity in (i) is proven similarly. Note that, striclty speaking, the equations in (i) involve three
different zeros.

For part (ii), let us use the convention adopted earlier in the semester, namely, if V is vector space with
basis {vc}c∈C , then when we write

∑
c αcvc, with αc ∈ F , we mean that all but finitely many αc are zero.

Thus, if v ∈ V and w ∈ W , we can write v =
∑

c αcvc and w =
∑

d βdwd, for some αc, βd ∈ F , all but
finitely many of which are zero. Therefore,

v ⊗ w = (
∑
c

αcvc)⊗ (
∑
d

βdwd) =
∑
d

((
∑
c

αcvc)⊗ βdwd) =
∑
c,d

(αcvc)⊗ (βdwd) =
∑
c,d

αcβd(vc ⊗ wd).

Since the vectors v ⊗ w span V ⊗W , this shows that the set {vc ⊗ wd}c∈C,d∈D spans V ⊗W .

To see that these vectors are linearly independent over F , we start with a specific dependence relation:

(∗) γ1(vc1 ⊗ wd1
) + · · ·+ γr(vcr ⊗ wdr

) = 0.

Define gc1,d1 : V × W → F as follows. For (v, w) ∈ V × W , write v =
∑

c αcvc and w =
∑

d βdwd and
set gc1,d1(v, w) = αc1βd1 . Note that g(v, w) ̸= 0 if and only if the coefficients of vc1 in v and wd1 in w are
non-zero. Moreover, gc1,d1

(vc, wd) = 1 if c = c1 and d = d1, and equals zero otherwise.

It is easy to check that gc1,d1 is bilinear. For example, for v, w as in the previous paragraph, and v′ =
∑

c α
′
cvc,

gc1,d1
(λv + v′, w) = gc1,d1

(
∑
c

(λαc + α′
c)vc,

∑
d

βdwd) = (λαc1 + α′
c1)βd1

while on the other hand,

gc1,d1
(λv,w) + gc1,d1

(v′, w) = λαc1βd1
+ α′

c1βd1
,

which shows that gc1,d1
is linear in its first variable. Linearity in the second variable is demonstrated in a

similar manner. Thus, gc1,d1 is bilinear, and consequently there exists a linear transformation T : V ⊗W → F
such that T ◦ f = gc1,d1 , where f is the bilinear map associated to V ⊗W . In particular, T (vc ⊗ wd) = 1 if
c = c1 and d = d1, and equals zero otherwise. Thus, if we apply T to equation (*), we get

0 = γ1 T ((vc1 ⊗ wd1)) + · · ·+ γr T ((vcr ⊗ wdr )= γ1 ·1,

and thus, γ1 = 0. We may repeat this argument for each of the other terms vci ⊗wdi
in (*) to see that each

γi = 0, for 2 ≤ i ≤ r. Thus, the set {vc ⊗ wd}c∈C,d∈D is linearly independent, and therefore forms a basis
for V ⊗W .

For parts (iii) and (iv), see Exam 3. □
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Corollary 4. Let V and W be finite dimensional vector spaces. If dim(V ) = n and dim(W ) = m, then
dim(V ⊗W ) = nm.

We close with our motivating case:

Extension of Scalars. Assume V is a vector space over F and F ⊆ K is an extension of fields. Then
K ⊗F V has the structure of a vector space over K.

Proof. Since K ⊗F V is already a vector space over F , the only real issue is the following: Suppose
k⊗v ∈ K⊗F V and τ ∈ K. One would like to define τ · (k⊗v) := (τk)⊗v. One has to check that this is well
defined. In other words, if k⊗ v = k′⊗ v′, then (τk)⊗ v = (τk′)⊗ v′. More generally, since a typical element
in K ⊗F V is a finite sum of expressions of the form k ⊗ v, one has to check that this scalar multiplication
is well-defined when applied to these sums. We will do this in two steps.

Step 1. Let {vi}i∈I be a basis for V . Then using the bilinear properties of ⊗ it is easy to see that a typical
element in K ⊗F V can be written as Σi∈Iki ⊗ vi. In fact, this expression is unique in the following sense:
Suppose Σi∈Iki⊗vi = Σi∈Ik

′
i⊗vi, then ki = k′i for all i ∈ I. To see this, let ϕ : K×V → K⊗F V be the map

associated with K ⊗F V and
⊕

i∈I K be the direct sum of K, indexed by I. Note that
⊕

i∈I K is a vector
space over F and K. Let {ei}i∈I ⊆

⊕
i∈I K be the natural basis, i.e., ei is the I-tuple that is 1 in the ith

coordinate and 0 in the jth coordinate, for all j ∈ I\{i}. We define h : K×V →
⊕

i∈I K as follows. Writing
v = Σi∈Iαivi, h(k, v) := Σi∈Ikαiei. Then it is easy to check that h is bilinear. Thus, there exists a unique
F -linear transformation T : K ⊗F V → Σi∈IK such that Tϕ = h. In other words, T (k ⊗ v) = Σi∈Ikαiei.
Note that T (1⊗ vi) = ei, for all i ∈ I. Now, if Σi∈Iki ⊗ vi = Σi∈Ik

′
i ⊗ vi, then applying T to both sides of

this equation, we have Σi∈Ikiei = Σi∈Ik
′
iei, so that ki = k′i, for all i ∈ I.

Step 2. Now suppose
∑n

j=1 kj ⊗ uj =
∑n

j=1 k
′
j ⊗ u′

j in K ⊗F V . For τ ∈ K, we want to show

n∑
j=1

(τkj)⊗ uj =

n∑
j=1

(τk′k)⊗ u′
j .

Write uj = Σi∈Iαijvi and u′
j = Σi∈Iα

′
ijvi. Then

n∑
j=1

kj ⊗ uj =

n∑
j=1

kj ⊗ (Σi∈Iαijvi) = Σi∈I(

n∑
j=1

kjαij)⊗ vi,

and similarly,

n∑
j=1

k′j ⊗ u′
j =

n∑
j=1

k′j ⊗ (Σi∈Iα
′
ijvi) = Σi∈I(

n∑
j=1

k′jα
′
ij)⊗ vi,

Thus, by Step 1,
∑n

j=1 kjαij =
∑n

j=1 k
′
jα

′
ij , for all i ∈ I, and therefore,

∑n
j=1 τkjαij =

∑n
j=1 τk

′
jα

′
ij , for all

i ∈ I. It follows that

Σi∈I(

n∑
j=1

τkjαij)⊗ vi = Σi∈I(

n∑
j=1

τk′jα
′
ij)⊗ vi,

and therefore, upon re-writing these sums, we have
∑n

j=1(τki) ⊗ ui =
∑n

j=1(τk
′
i) ⊗ u′

i. Thus, we have a
well-defined scalar multiplication of elements from K ⊗F V by scalars from K. That K ⊗F V satisfies the
axioms of a K-vector space is now a straight forward exercise. □
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